Anaerobic biodegradation of an artificial mixture of polycyclic aromatic hydrocarbons (PAHs), which simulates the PAH component of creosote, was examined under methanogenic, sulfidogenic, and nitrate-reducing conditions using creosote-contaminated sediment as the source of inoculum. PAH degradation, CH4 formation and ion reduction were monitored for up to one year. Despite demonstrating active methanogenic and nitrate-reducing anaerobic bacterial communities, only limited degradation of a few PAHs was observed. Under methanogenic conditions limited degradation of all bicyclic (naphthalene, 1-and 2-methylnaphthalene, biphenyl, and 2,6-dimethylnaphthalene) and one tricyclic PAH, anthraquinone, was detected. 2-Methylanthracene was apparently degraded under nitrate-reducing conditions. Anthraquinone declined in sulfate enrichments, but this decline was not dependent upon sulfate reduction. None of the 4- or 5-ring PAHs were degraded under any of the enrichment conditions. These data indicate that under the anaerobic conditions tested there is only a limited potential to degrade PAHs which must be considered when proposing bioremediation technologies for PAH-contaminated sites, especially if high-molecular-weight PAHs are present.