Abstract
We evaluate the ability of a deformable model to yield accurate shape descriptions of fluid-filled regions associated with age-related macular degeneration. Calculation of retinal thickness and volume by the current optical coherence tomography (OCT) system includes fluid-filled regions or lesions along with actual retinal tissue. In order to quantify these lesions independently from the retinal tissue, they must be outlined. A deformable model was applied to OCT images of retinas demonstrating cystoids and subretinal fluid spaces. Several implementation issues were addressed in order to choose appropriate parameters. The use of a nonlinear anisotropic diffusion filter to suppress speckle noise while at the same time preserving the edges of the original image was explored. Once the contours of the lesions were outlined, quantitative analysis of the surface area and volume of the lesions was performed. The deformable model could accurately outline fluid-filled regions within the retina. The detection method tested proved effective in capturing the complexity of fluid-filled regions in OCT images. Deformable models combined with nonlinear anisotropic diffusion filtering show promise in the detection of retinal features of interest for diagnosis in clinical OCT images. Thus, fluid-filled region detection may significantly aid in analysis of treatments and diagnosis.

This publication has 22 references indexed in Scilit: