Real-time multi-functional optical coherence tomography

Abstract
We demonstrate real-time acquisition, processing, and display of tissue structure, birefringence, and blood flow in a multi-functional optical coherence tomography (MF-OCT) system. This is accomplished by efficient data processing of the phase-resolved inteference patterns without dedicated hardware or extensive modification to the high-speed fiber-based OCT system. The system acquires images of 2048 depth scans per second, covering an area of 5 mm in width×1.2 mm in depth with real-time display updating images in a rolling manner 32 times each second. We present a video of the system display as images from the proximal nail fold of a human volunteer are taken.