An approximation of central-axis absorbed dose in narrow photon beams

Abstract
In narrow photon beams of therapeutic energy range, the absorbed dose derived from experimental measurements is subject to a significant error. The error stems from high dose gradients characteristic to small radiation fields and from finite probe dimensions. In this study, a simple model for the narrow-beam absorbed dose is described. It is shown that broad-beam dose data are sufficient to predict a narrow-beam dose. The dose is calculated as a sum of primary and scatter components given in the form of respective analytical functions. For both functions, numerical coefficients are determined in broad-beam geometry. The model is evaluated by comparing calculated dose values with the Monte Carlo simulated narrow-beam dose data for 6 and 15 MV x rays.