Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human cells.
Open Access
- 1 June 1987
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 84 (11) , 3782-3786
- https://doi.org/10.1073/pnas.84.11.3782
Abstract
The role of UV radiation-induced photoproducts in initiating base substitution mutations in human cells was examined by measuring photoproduct frequency distributions and mutations in a supF tRNA gene on a shuttle vector plasmid transfected into DNA repair-deficient cells (xeroderma pigmentosum, complementation group A) and into normal cells. Frequencies of cyclobutane dimers and pyrimidine-pyrimidone (6-4) photoproducts varied by as much as 80-fold at different dipyrimidine sites within the gene. All transition mutations occurred at dipyrimidine sites, predominantly at cytosine, with a 17-fold variation in mutation frequency between different sites. Removal of greater than 99% of the cyclobutane dimers by in vitro photoreactivation before transfection reduced the mutation frequency while preserving the mutation distribution, indicating that (i) cytosine-containing cyclobutane dimers were the major mutagenic lesions at these sites and (ii) cytosine-containing non-cyclobutane dimer photoproducts were also mutagenic lesions. However, at individual dipyrimidine sites neither the frequency of cyclobutane dimers nor the frequency of pyrimidine-pyrimidone (6-4) photoproducts correlated with the mutation frequency, even in the absence of excision repair. Mutation hot spots occurred at sites with low or high frequency of photoproduct formation and mutation cold spots occurred at sites with many photoproducts. These results suggest that although photoproducts are required for UV mutagenesis, the prominence of most mutation hot spots and cold spots is primarily determined by DNA structural features rather than by the frequency of DNA photoproducts.Keywords
This publication has 29 references indexed in Scilit:
- UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells.Molecular and Cellular Biology, 1986
- A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene.Proceedings of the National Academy of Sciences, 1984
- MUTATIONAL SPECIFICITY IN BACTERIAAnnual Review of Genetics, 1983
- Base sequence and helix structure variation in B and A DNAJournal of Molecular Biology, 1983
- Mechanics of sequence-dependent stacking of bases in B-DNAJournal of Molecular Biology, 1982
- UV-induced mutation hotspots occur at DNA damage hotspotsNature, 1982
- Mutational specificity of UV light in Escherichia coli: indications for a role of DNA secondary structure.Proceedings of the National Academy of Sciences, 1982
- Specific sequences in native DNA that arrest synthesis by DNA polymerase alpha.Journal of Biological Chemistry, 1982
- SPECTROSCOPIC STUDIES ON ACETYLAMINOFLUORENE-MODIFIED (DT-DG)N.(DC-DA)N SUGGEST A LEFT-HANDED CONFORMATION1982
- GENETICS OF TRANSFER RNAAnnual Review of Genetics, 1972