Irreversible loss of the oestrogen receptor in T47D breast cancer cells following prolonged oestrogen deprivation
Open Access
- 1 October 1996
- journal article
- Published by Springer Nature in British Journal of Cancer
- Vol. 74 (8) , 1227-1236
- https://doi.org/10.1038/bjc.1996.521
Abstract
The development of antioestrogen resistance is a major clinical obstacle encountered in the treatment of breast cancer. By long-term growth in oestrogen-free medium, we have derived an oestrogen-independent, anti-oestrogen resistant cell line from the oestrogen receptor (ER)-positive, oestrogen-dependent T47D human breast cancer cell line. This cell line grows maximally in oestrogen-free medium and is resistant to all tested antioestrogens. This cell line does not express any measurable amounts of ER mRNA or protein and, in short-term studies, these cells show no response to either oestrogens or antioestrogens. However, return of these cells to oestrogen-containing medium for more than 8 weeks resulted in the re-expression of ER mRNA and protein. Subsequent limiting dilution subcloning of the T47D:C4 line revealed two phenotypically distinct clones, one which did not express measurable ER after long-term growth in oestrogen-containing medium and one which expressed ER mRNA and protein after a number of weeks in oestrogen-containing medium. In the absence of oestrogen, both types of cells are ER-negative as determined by Northern and Western blotting and lack of any oestrogen-dependent responses. The clone which re-expresses the ER (T47D:C4:5W) now responds to E2 with a 50% increase in growth and a 30-fold induction of an ER-responsive luciferase reporter construct. Long-term growth of the stably ER-negative clone (T47D:C4:2W) causes no measurable oestrogen-mediated responses, as assessed by ER expression, growth stimulation or luciferase induction. Interestingly, ER mRNA can be detected in both cell types by using reverse transcriptase-polymerase chain reaction (RT-PCR). This suggests that the ER mRNA present in the T47D:C4:2W clone is either inefficiently translated or is present at such a low level as to be functionally irrelevant. These novel clonal cell lines will prove to be invaluable in the study of the regulation of ER expression and regulatory pathways leading to oestrogen-independent growth.Keywords
This publication has 44 references indexed in Scilit:
- Estrogen Receptor in a Human Cell Line (MCF-7) from Breast CarcinomaPublished by Elsevier ,2021
- Progesterone Receptor Regulation in T47D Human Breast Cancer Cells: Analysis by Density Labeling of Progesterone Receptor Synthesis and Degradation and Their Modulation by Progestin*Endocrinology, 1988
- The cellular response of human breast cancer to estrogen.1988
- GROWTH-INHIBITION AND INCREASE OF INSULIN-RECEPTORS IN ANTIESTROGEN-RESISTANT T47DCO HUMAN-BREAST CANCER-CELLS BY PROGESTINS - IMPLICATIONS FOR ENDOCRINE THERAPIES1985
- Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer.Journal of Clinical Oncology, 1984
- Estrogens Stimulate Cell Proliferation and Induce Secretory Proteins in a Human Breast Cancer Cell Line (T47D)*Journal of Clinical Endocrinology & Metabolism, 1982
- Variant T47D human breast cancer cells with high progesterone-receptor levels despite estrogen and antiestrogen resistancePublished by Elsevier ,1982
- A simple, rapid, and sensitive DNA assay procedureAnalytical Biochemistry, 1980
- Establishment and characterization of a cell line of human breast carcinoma originPublished by Elsevier ,1979
- EFFECTS OF ESTROGENS AND ANTIESTROGENS ON HORMONE-RESPONSIVE HUMAN BREAST-CANCER IN LONG-TERM TISSUE-CULTURE1976