Structural basis for ligand and heparin binding to neuropilin B domains
- 10 April 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (15) , 6152-6157
- https://doi.org/10.1073/pnas.0700043104
Abstract
Neuropilin (Nrp) is a cell surface receptor with essential roles in angiogenesis and axon guidance. Interactions between Nrp and the positively charged C termini of its ligands, VEGF and semaphorin, are mediated by Nrp domains b1 and b2, which share homology to coagulation factor domains. We report here the crystal structure of the tandem b1 and b2 domains of Nrp-1 (N1b1b2) and show that they form a single structural unit. Cocrystallization of N1b1b2 with Tuftsin, a peptide mimic of the VEGF C terminus, reveals the site of interaction with the basic tail of VEGF on the b1 domain. We also show that heparin promotes N1b1b2 dimerization and map the heparin binding site on N1b1b2. These results provide a detailed picture of interactions at the core of the Nrp signaling complex and establish a molecular basis for the synergistic effects of heparin on Nrp-mediated signaling.Keywords
This publication has 62 references indexed in Scilit:
- Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1Life Sciences, 2006
- Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signalingThe EMBO Journal, 2006
- Neuropilins in neoplasms: Expression, regulation, and functionExperimental Cell Research, 2006
- Developments in theCCP4 molecular-graphics projectActa Crystallographica Section D-Biological Crystallography, 2004
- Coot: model-building tools for molecular graphicsActa Crystallographica Section D-Biological Crystallography, 2004
- The biology of VEGF and its receptorsNature Medicine, 2003
- Refinement of Macromolecular Structures by the Maximum-Likelihood MethodActa Crystallographica Section D-Biological Crystallography, 1997
- [20] Processing of X-ray diffraction data collected in oscillation modePublished by Elsevier ,1997
- MOLMOL: A program for display and analysis of macromolecular structuresJournal of Molecular Graphics, 1996
- The CCP4 suite: programs for protein crystallographyActa Crystallographica Section D-Biological Crystallography, 1994