Abstract
This paper provides estimates of convective turnover time scales for Sun-like stars in the pre-main sequence and early post-main sequence phases of evolution, based on up-to-date physical input for the stellar models. In this first study, all models have solar abundances, which is typical of the stars in the Galactic disk where most of the available data have been collected. A new feature of these models is the inclusion of rotation in the evolutionary sequences, thus making it possible to derive theoretically the Rossby number for each star along its evolutionary track, based on its calculated rotation rate and its local convective turnover time near the base of the convection zone. Global turnover times are also calculated for the complete convection zone. This information should make possible a new class of observational tests of stellar theory which were previously impossible with semi-empirical models, particularly in the study of stellar activity and in research related to angular momentum transfer in stellar interiors during the course of stellar evolution.
All Related Versions

This publication has 0 references indexed in Scilit: