Transcriptional and post‐transcriptional regulation by nickel ofsodNgene encoding nickel‐containing superoxide dismutase fromStreptomyces coelicolorMüller
Open Access
- 1 January 1998
- journal article
- research article
- Published by Wiley in Molecular Microbiology
- Vol. 27 (1) , 187-195
- https://doi.org/10.1046/j.1365-2958.1998.00674.x
Abstract
A novel type of superoxide dismutase containing nickel as a cofactor (NiSOD) has been discovered in severalStreptomycesspp. The gene for NiSOD (sodN ) was cloned fromS.coelicolorMüller using degenerate oligonucleotide probes designed from the N‐terminal peptide sequence of the purified enzyme. It encodes a polypeptide of 131 amino acids (14703 Da), without any apparent sequence similarity to other known proteins. The N‐terminus of the purified NiSOD was located 14 amino acids downstream from the initiation codon of the deduced open reading frame (ORF), indicating the involvement of protein processing. The molecular mass of the processed polypeptide was predicted to be 13201 Da, in close agreement with that of the purified NiSOD (13.4 kDa). The transcription start site of thesodNgene was determined by S1 mapping and primer extension analysis. Ni2+regulates the synthesis of NiSOD polypeptide. S1 mapping of both 5′ and 3′ ends ofsodNmRNA revealed that Ni2+increased the level of monocistronicsodNmRNA by more than ninefold without changing its half‐life, thus demonstrating that Ni2+regulates transcription. Both precursor and processed NiSOD polypeptides with little SOD activity were produced from the clonedsodNgene inS.lividansin the absence of sufficient Ni2+; however, on addition of Ni2+, active NiSOD consisting of only processed polypeptide was formed. Expression of the full‐lengthsodNgene inE.coliproduced NiSOD polypeptide without any SOD activity even in the presence of Ni2+. However, deletion of nucleotides encoding the N‐terminal 14 amino acids from thesodNgene allowed the production of active NiSOD inE.coli, indicating that N‐terminal processing is required to produce active NiSOD. These results reveal the unique role of nickel as a multifaceted regulator inS.coelicolorcontrollingsodNtranscription and protein processing, as well as acting as a catalytic cofactor.Keywords
This publication has 34 references indexed in Scilit:
- Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2)Nucleic Acids Research, 1997
- Unique Isozymes of Superoxide Dismutase inStreptomyces griseusArchives of Biochemistry and Biophysics, 1996
- Differential Expression of Superoxide Dismutases Containing Ni and Fe/Zn in Streptomyces CoelicolorEuropean Journal of Biochemistry, 1996
- A novel nickel-containing superoxide dismutase from Streptomyces sppBiochemical Journal, 1996
- Identification of the Potential Active Site of the Signal Peptidase SipS of Bacillus subtilisPublished by Elsevier ,1995
- Characterisation of a Protease from Escherichia coli Involved in Hydrogenase MaturationEuropean Journal of Biochemistry, 1995
- Escherichia coli expresses a copper- and zinc-containing superoxide dismutase.Journal of Biological Chemistry, 1994
- Transcriptional and maturational effects of manganese and iron on the biosynthesis of manganese-superoxide dismutase in Escherichia coli.Journal of Biological Chemistry, 1992
- Compilation and analysis of DNA sequences associated with apparent streptomycete promotersNucleic Acids Research, 1992
- Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme.Journal of Biological Chemistry, 1982