Abstract
Axisymmetric plastic buckling of axially compressed cylindrical shells is studied for semi-infinite shells and shells of finite length subject to free-edge boundary conditions. It is shown that the length of the cylinder has a negligible effect on the buckling load. Reductions in buckling stresses from the classical simple-support value are significant, with the amount of reduction dependent on the details of the variation of tangent modulus with stress. Numerical results are presented for cylinders composed of 2024-T4 aluminum and 3003-0 aluminum.

This publication has 0 references indexed in Scilit: