a-Si:H TFTs Made on Polyimide Foil by PE-CVD at 150°C
- 1 January 1998
- journal article
- Published by Springer Nature in MRS Proceedings
Abstract
We have fabricated high-performance amorphous silicon thin-film transistors (a-Si:H TFTs) on 2 mil. (51 µm) thick polyimide foil substrates. The TFT structure was deposited by r.f.-excited plasma enhanced chemical vapor deposition (PECVD). All TFT layers, including the gate silicon nitride, the undoped, and the n+ amorphous silicon were deposited at a substrate temperature of 150°C. The transistors have inverted-staggered back-channel etch structure. The TFT off-current is ∼ 10−12 A, the on-off current ratio is > 107, the threshold voltage is 3.5 V, the sub-threshold slope is ∼ 0.5V/decade, and the linear-regime mobility is ∼ 0.5 cm2V−1s−1. We compare the mechanical behavior of a thin film on a stiff and on a compliant substrate. The thin film stress can be reduced to one half by changing from a stiff to a compliant substrate. A new equation is developed for the radius of curvature of thin films on compliant substrates.Keywords
This publication has 4 references indexed in Scilit:
- An amorphous silicon thin film transistor fabricated at 125 °C by dc reactive magnetron sputteringApplied Physics Letters, 1997
- Small and large deformation of thick and thin-film multi-layers: Effects of layer geometry, plasticity and compositional gradientsJournal of the Mechanics and Physics of Solids, 1996
- The thermomechanical integrity of thin films and multilayersActa Metallurgica et Materialia, 1995
- Effects of Plasma Enhanced Chemical Vapor Deposition Substrate Heating on the Electrical Properties of α‐Si:H Thin Film TransistorsJournal of the Electrochemical Society, 1994