Abstract
We show that <!-- MATH $h({f_\infty }) = \log 2$ --> where <!-- MATH ${f_\infty }$ --> is the map on the space of sequences of zeros and ones induced by the block map <!-- MATH $f({x_0}, \ldots ,{x_k}) = {x_0} + \Pi _{i = 1}^k({x_i} + {b_i})$ --> where <!-- MATH $k \geqslant 2$ --> and the k-block <!-- MATH ${b_1} \ldots {b_k}$ --> is aperiodic.

This publication has 8 references indexed in Scilit: