Synaptic Depression and the Temporal Response Characteristics of V1 Cells

Abstract
We explore the effects of short-term synaptic depression on the temporal dynamics of V1 responses to visual images by constructing a model simple cell. Synaptic depression is modeled on the basis of previous detailed fits to experimental data. A component of synaptic depression operating in the range of hundreds of milliseconds can account for a number of the unique temporal characteristics of cortical neurons, including the bandpass nature of frequency–response curves, increases in response amplitude and in cutoff frequency for transient stimuli, nonlinear temporal summation, and contrast-dependent shifts in response phase. Synaptic depression also provides a mechanism for generating the temporal phase shifts needed to produce direction selectivity, and a model constructed along these lines matches both extracellular and intracellular data. A slower component of depression can reproduce the effects of contrast adaptation.