Tensor-scalar gravity and binary-pulsar experiments

Abstract
Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation are interpreted as a scalar analogue of ferromagnetism: "spontaneous scalarization." This phenomenon leads to very significant deviations from general relativity in conditions involving strong gravitational fields, notably binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily vanish when the weak-field scalar coupling tends to zero. We compute the scalar "form factors" measuring these deviations, and notably a parameter entering the pulsar timing observable γ through scalar-field-induced variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation between tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are already very tightly constrained by published data on three binary-pulsar systems. We contrast the probing power of pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic two-dimensional plane of tensor-scalar theories.
All Related Versions