Tpa1p Is Part of an mRNP Complex That Influences Translation Termination, mRNA Deadenylation, and mRNA Turnover in Saccharomyces cerevisiae
- 1 July 2006
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 26 (14) , 5237-5248
- https://doi.org/10.1128/mcb.02448-05
Abstract
In this report, we show that the Saccharomyces cerevisiae protein Tpa1p (for termination and polyadenylation) influences translation termination efficiency, mRNA poly(A) tail length, and mRNA stability. Tpa1p is encoded by the previously uncharacterized open reading frame YER049W. Yeast strains carrying a deletion of the TPA1 gene (tpa1Δ) exhibited increased readthrough of stop codons, and coimmunoprecipitation assays revealed that Tpa1p interacts with the translation termination factors eRF1 and eRF3. In addition, the tpa1Δ mutation led to a 1.5- to 2-fold increase in the half-lives of mRNAs degraded by the general 5′→3′ pathway or the 3′→5′ nonstop decay pathway. In contrast, this mutation did not have any affect on the nonsense-mediated mRNA decay pathway. Examination of mRNA poly(A) tail length revealed that poly(A) tails are longer than normal in a tpa1Δ strain. Consistent with a potential role in regulating poly(A) tail length, Tpa1p was also found to coimmunoprecipitate with the yeast poly(A) binding protein Pab1p. These results suggest that Tpa1p is a component of a messenger ribonucleoprotein complex bound to the 3′ untranslated region of mRNAs that affects translation termination, deadenylation, and mRNA decay.Keywords
This publication has 82 references indexed in Scilit:
- The GTP-binding Release Factor eRF3 as a Key Mediator Coupling Translation Termination to mRNA DecayJournal of Biological Chemistry, 2004
- Global analysis of protein localization in budding yeastNature, 2003
- A Novel Role of the Mammalian GSPT/eRF3 Associating with Poly(A)-binding Protein in Cap/Poly(A)-dependent TranslationJournal of Biological Chemistry, 2002
- Coupling of Termination, 3′ Processing, and mRNA ExportMolecular and Cellular Biology, 2002
- An mRNA Surveillance Mechanism That Eliminates Transcripts Lacking Termination CodonsScience, 2002
- Exosome-Mediated Recognition and Degradation of mRNAs Lacking a Termination CodonScience, 2002
- Block of HAC1 mRNA Translation by Long-Range Base Pairing Is Released by Cytoplasmic Splicing upon Induction of the Unfolded Protein ResponseCell, 2001
- Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeastThe EMBO Journal, 2001
- The Eukaryotic Polypeptide Chain Releasing Factor (eRF3/GSPT) Carrying the Translation Termination Signal to the 3′-Poly(A) Tail of mRNAJournal of Biological Chemistry, 1999
- The Efficiency of Translation Termination is Determined by a Synergistic Interplay Between Upstream and Downstream Sequences inSaccharomyces cerevisiaeJournal of Molecular Biology, 1995