Abstract
Graft copolymerization of electron acceptor acrylic monomers on cellulose involves cellulose-monomer complexation. Cellulose acts as a matrix promoting high localized concentrations of donor-acceptor complexes in which uncomplexed monomer, normally an electron acceptor, behaves as a donor relative to the complexed monomer which has been converted to a stronger acceptor. The cellulose-monomer complexation influences both homopolymerizability and grafting efficiency, e. g. acrylonitrile (AN) and methacrylonitrile (MAN) in the presence of a catalyst and methyl methacrylate (MMA) in the absence of a catalyst. The presence of water, cupric ion, aldehydes, and CCU influence the course of the uncatalyzed reaction. When a donor monomer is present, equimolar alternating rather than random, grafted and ungrafted copolymers are produced, e. g., styrene or butadiene with MMA, MAN, or AN, as a result of the formation of an ordered array of donor-acceptor complexes on the cellulose. The revised mechanism of polymerization involves the homopolymerization of the donor-acceptor complexes, irrespective of the nature of the initiator, and grafting results from termination of the propagating chains by coupling with radicals on the cellulose.

This publication has 19 references indexed in Scilit: