Ab Initio Calculation of Optical Rotatory Dispersion (ORD) Curves: A Simple and Reliable Approach to the Assignment of the Molecular Absolute Configuration
- 17 September 2004
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 126 (40) , 12968-12976
- https://doi.org/10.1021/ja046875l
Abstract
In this paper, both Hartree−Fock (HF) and density functional theory (DFT) methods have been used to make ab initio calculations of the optical rotatory power of selected molecules at several wavelengths; that is, part of the optical rotatory dispersion (ORD) curve has been predicted. This approach constitutes a new, simple, and reliable method to assign the molecular absolute configuration, at least for rigid molecules such as those studied in the present work. In fact, in this way, it is possible to overcome the difficulties connected to some relevant cases, in particular that of (−)-β-pinene, for which even a very high-level (DFT/B3LYP/6-311++G(2d,2p)) calculation affords the wrong sign of the optical rotation at 633 nm. On the contrary, the predicted ORD curve, even using small basis sets, reproduces (below 400 nm) the experimental trend well, allowing for the correct configurational assignment. This result clearly shows that to have a reliable configurational assignment the comparison between experimental and predicted rotation values must be carried out at different wavelengths and not at a single frequency. The reason for this is that working at wavelengths approaching the absorption maximum the [α]λ values become larger and their prediction becomes more reliable. Coupling the use of an inexpensive instrument (a polarimeter working at a few wavelengths) with the use of a DFT-calculation package can also allow the experimental organic chemist to arrive, quickly and reliably, at the assignment of the molecular absolute configuration.Keywords
This publication has 54 references indexed in Scilit:
- Optical Activity of 1-Butene, Butane, and Related HydrocarbonsThe Journal of Physical Chemistry A, 2003
- Intrinsic rotation and molecular structureChirality, 2003
- Assignment of the Molecular Absolute Configuration through the ab Initio Hartree−Fock Calculation of the Optical Rotation: Can the Circular Dichroism Data Help in Reducing Basis Set Requirements?The Journal of Organic Chemistry, 2003
- Ab initio prediction of optical rotation: Comparison of density functional theory and Hartree‐Fock methods for three 2,7,8‐trioxabicyclo[3.2.1]octanesChirality, 2002
- Optical Rotation Computation, Total Synthesis, and Stereochemistry Assignment of the Marine Natural Product Pitiamide AJournal of the American Chemical Society, 2000
- Ab Initio Predictions of Anomalous Optical Rotatory DispersionJournal of the American Chemical Society, 1998
- Medium-size polarized basis sets for high-level-correlated calculations of molecular electric propertiesTheoretical Chemistry Accounts, 1991
- Molecular-Orbital Theory of Diamagnetism. I. An Approximate LCAO SchemeThe Journal of Chemical Physics, 1962
- Theories of Optical Rotatory PowerReviews of Modern Physics, 1937
- Quantenmechanische Theorie der nat rlichen optischen Aktivit t von Fl ssigkeiten und GasenThe European Physical Journal A, 1929