Molecular simulation of shocked materials using the reactive Monte Carlo method

Abstract
We demonstrate the applicability of the reactive Monte Carlo (RxMC) simulation method [J. K. Johnson, A. Z. Panagiotopoulos, and K. E. Gubbins, Mol. Phys. 81, 717 (1994); W. R. Smith and B. Tříska, J. Chem. Phys. 100, 3019 (1994)] for calculating the shock Hugoniot properties of a material. The method does not require interaction potentials that simulate bond breaking or bond formation; it requires only the intermolecular potentials and the ideal-gas partition functions for the reactive species that are present. By performing Monte Carlo sampling of forward and reverse reaction steps, the RxMC method provides information on the chemical equilibria states of the shocked material, including the density of the reactive mixture and the mole fractions of the reactive species. We illustrate the methodology for two simple systems (shocked liquid NO and shocked liquid N2), where we find excellent agreement with experimental measurements. The results show that the RxMC methodology provides an important simulation tool capable of testing models used in current detonation theory predictions. Further applications and extensions of the reactive Monte Carlo method are discussed.