On-line learning in soft committee machines

Abstract
The problem of on-line learning in two-layer neural networks is studied within the framework of statistical mechanics. A fully connected committee machine with K hidden units is trained by gradient descent to perform a task defined by a teacher committee machine with M hidden units acting on randomly drawn inputs. The approach, based on a direct averaging over the activation of the hidden units, results in a set of first-order differential equations that describes the dynamical evolution of the overlaps among the various hidden units and allows for a computation of the generalization error. The equations of motion are obtained analytically for general K and M and provide a powerful tool used here to study a variety of realizable, over-realizable, and unrealizable learning scenarios and to analyze the role of the learning rate in controlling the evolution and convergence of the learning process.

This publication has 14 references indexed in Scilit: