Antimicrobial activity of cecropins

Abstract
The lytic peptides, cecropins, were originally isolated from the haemolymph of the giant silk moth, Hyalophora cecropia and possess antibacterial and anticancer activity in vitro. This study investigated the antimicrobial activity of these peptides against human pathogens using standardised assay techniques, and the activity of cecropin B on outer and inner bacterial membranes. From a panel of 15 organisms, Gram-negative bacteria were generally more sensitive to cecropins than Gram-positive organisms, especially the lipopolysaccharide defective mutant, Escherichia coli BUE55. Cecropins B and P1 shared similar MIC values whereas Shiva-1, a cecropin B analogue, was less active. Through combination studies with hydrophobic antibiotics and electron microscopy, cecropin B was shown to disrupt the bacterial outer membrane. Protoplasts of Staphylococcus aureus and Staphylococcus epidermidis were resistant to cecropin B, suggesting that the cytoplasmic membranes of Gram-positive organisms were inherently more resistant to the peptide.