Enhanced phagocytosis of encapsulated Escherichia coli strains after exposure to sub-MICs of antibiotics is correlated to changes of the bacterial cell surface
- 1 February 1990
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 34 (2) , 332-336
- https://doi.org/10.1128/aac.34.2.332
Abstract
The influence of five antibiotics (netilmicin, ceftriaxone, cefepime, fleroxacin, and ciprofloxacin) on capsular polysaccharide distribution and on opsonophagocytosis by human polymorphonuclear leukocytes of unencapsulated and encapsulated Escherichia coli strains was studied. Unencapsulated E. coli strains were readily opsonized in serum and easily ingested by polymorphonuclear leukocytes, and antibiotics did not further enhance the phagocytosis rates. In contrast, encapsulated bacteria were poorly opsonized in human serum, and phagocytosis was enhanced after overnight exposure to 0.5x the MICs of the antibiotics, with the exception of cefepime. Incubation of unencapsulated as well as encapsulated bacteria in complement-inactivated serum markedly reduced the bacterial uptake by polymorphonuclear leukocytes regardless of the presence of antibiotics. Slide agglutination assays, performed either with a monoclonal antibody for capsular polysaccharide or with an antiserum raised against the stable unencapsulated mutant E. coli O7:K-, showed reduction but not lack of the capsular polysaccharide of encapsulated E. coli O7:K1, and better exposure of subcapsular epitopes, after incubation with 0.5x the MICs of antibiotics. Flow cytometric analysis of encapsulated E. coli exposed to netilmicin, ciprofloxacin, and fleroxacin revealed that the reduction in capsular material was homogeneous among the bacterial population. Treatment with cefepime and ceftriaxone induced two populations of bacteria that differed in the amount of K antigen present. These results indicate that sub-MICs of netilmicin, ceftriaxone, fleroxacin, and ciprofloxacin influenced complement-mediated opsonization, probably due to changes in the capsular polysaccharide structure.This publication has 23 references indexed in Scilit:
- The influence of subminimal inhibitory concentrations of netilmicin and ceftriaxone on the interaction of Escherichia coli with host defencesJournal of Antimicrobial Chemotherapy, 1989
- Direct and indirect immunofluorescence analysis of bacterial populations by flow cytometryJournal of Immunological Methods, 1987
- Sub-MICs of cefuroxime and ciprofloxacin influence interaction of complement and immunoglobulins with Klebsiella pneumoniaeAntimicrobial Agents and Chemotherapy, 1987
- Pathogenesis and Treatment of Acute Hematogenous Osteomyelitis: Evaluation of Current Views with Reference to an Animal ModelClinical Infectious Diseases, 1986
- Role of Lipopolysaccharide and Capsule in the Serum Resistance of Bacteremic Strains of Escherichia coliThe Journal of Infectious Diseases, 1986
- Bactericidal, Bacteriolytic and Opsonic Activity of Human Serum Against Escherichia ColiJournal of Medical Microbiology, 1986
- The Importance of the K1 Capsule in Invasive Infections Caused by Escherichia coliThe Journal of Infectious Diseases, 1984
- Antibiotics and PhagocytosisEuropean Journal of Clinical Microbiology & Infectious Diseases, 1983
- Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes.Journal of Clinical Investigation, 1980
- Kinetics of staphylococcal opsonization, attachment, ingestion and killing by human polymorphonuclear leukocytes: A quantitative assay using [3H] thymidine labeled bacteriaJournal of Immunological Methods, 1977