Rates of convergence of stochastically monotone and continuous time Markov models

Abstract
In this paper we give bounds on the total variation distance from convergence of a continuous time positive recurrent Markov process on an arbitrary state space, based on Foster-Lyapunov drift and minorisation conditions. Considerably improved bounds are given in the stochastically monotone case, for both discrete and continuous time models, even in the absence of a reachable minimal element. These results are applied to storage models and to diffusion processes.

This publication has 12 references indexed in Scilit: