Genome-Wide Screen of Three Herpesviruses for Protein Subcellular Localization and Alteration of PML Nuclear Bodies

Abstract
Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein–Barr virus. Twenty-four of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection. In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating nuclear bodies that control key cellular processes. Herpes simplex virus, Epstein–Barr virus, and cytomegalovirus are three types of human herpesviruses that infect most people for their entire life and, under some circumstances, cause significant diseases. Each virus encodes a large number of proteins that function to manipulate the host cell to the best advantage of the virus; however, many of these encoded proteins have never been studied. We have generated constructs to express most of the proteins encoded by these three viruses in human cells and have determined the precise localization of each in the cell. We have also examined how each viral protein affects host nuclear structures called PML bodies, which are part of the cellular response to suppress viral replication. We identified several proteins from all three viruses that disrupt PML bodies, suggesting that they would enable viral infection. Our study has given the first information on the potential function of 120 previously unstudied viral proteins and shows that each virus has multiple mechanisms to disrupt PML bodies that were not previously recognized.