ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY

Abstract
Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2

This publication has 5 references indexed in Scilit: