Weak Pseudogap Behavior in the Underdoped Cuprate Superconductors

Abstract
We report on an exact solution of the nearly antiferromagnetic Fermi liquid spin fermion model in the limit \pi T << \omega_{sf}, which demonstrates that the broad high energy features found in ARPES measurements of the spectral density of the underdoped cuprate superconductors are determined by strong antiferromagnetic (AF) correlations and precursor effects of an SDW state. We show that the onset temperature, T^{cr}, of weak pseudo-gap (pseudoscaling) behavior is determined by the strength, \xi, of the AF correlations, and obtain the generic changes in low frequency magnetic behavior seen in NMR experiments with \xi(T^{cr}) \approx 2, confirming the Barzykin and Pines crossover criterion.

This publication has 0 references indexed in Scilit: