Thermal expansion of epoxy‐resin/particle composites—a size effect

Abstract
The thermal expansion of epoxy‐resin (Epikote 828)/particle composites has been measured in the range 77 to 450 K. The fillers used were Cu spheres (seven sizes from 5 to 150 μm diameter) and glass ballotini spheres (three sizes from 3.5 to 200 μm diameter). The volume concentrations used were 0.3 and 0.5 for Cu and 0.3 for glass. The experiments show that the addition of filler raises the glass transition temperature Tg, especially for fine particles. Below the normal value of Tg the thermal expansion is independent of particle size while above Tg the expansion is considerably smaller for samples containing the smaller particles. The effect is more pronounced for Cu than for glass filler. In addition a rapid heating rate reduces the expansion for specimens containing smaller particles but it does not effect the expansion for those containing large particles. The results, which are discussed in the light of the work of other authors, suggest that the addition of particles increases Tg by changing the nature of the polymer not only immediately at the particle surface but also for a considerable distance into the polymer itself. This probably occurs because the epoxy bonds strongly to the particles and this inhibits segmental rotations of the polymer even at considerable distances from the particle surface.