Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein.

Abstract
The uncoupling protein (UCP) of mammalian brown fat is a specialized and unique component responsible for energy dissipation as heat. Translation and immunoprecipitation from sucrose-fractionated mRNA indicated that the mRNA of UCP sedimented at 14-16 S. A recombinant cDNA library prepared from mRNA of thermoactive brown fat enriched for UCP mRNA has been constructed and cloned in Escherichia coli. Recombinant plasmids were screened by differential colony hybridization to a cDNA probe complementary to poly(A)+ RNA isolated from thermogenic or from weakly thermogenic brown fat. Several differentially hybridizing plasmids were shown to contain UCP cDNA sequences by their ability to select a mRNA coding for an in vitro translation product that was immunoprecipitable with antibodies against UCP. Blot hybridization of brown fat mRNA to a 32P-labeled UCP cDNA probe revealed two major species of mRNA (15S and 18S). As compared to non-thermogenic tissue, a strikingly increased hybridization to the probe was observed with brown fat mRNA from thermoactive tissue. Moreover, hybridization was observed with RNA of brown adipose tissue from rat, hamster, or mouse but not with RNA from rat or mouse liver.