Supercooling of surface-modified phases

Abstract
Recent experiments that probe the effect of alcohol monolayers on the freezing of water are an example of well-characterized surface nucleation, where one has control over the instability by systematic surface modification. We present a simple theory of surface-modified, first-order phase transitions and show how supercooling may in fact be inhibited below a minimal supercooling temperature which is dependent on the macroscopic strength and spatial extent of the surface treatment. The results show that the temperature range where supercooling is possible can indeed vanish for strong enough surface treatments, in qualitative agreement with the experiments.