Abstract
Mammalian U3 small nucleolar RNA promoters possess a highly conserved distal sequence element (DSE) consisting of CCAAT and octamer motifs separated by 11 – 12 base pairs. We show here that both motifs are required for transcription of a rat U3D gene in Xenopus occytes. Deletion of the CCAAT motif leaves residual DSE activity, while removal of the octamer motif does not. Changing the conserved spacing between the two motifs generally inhibits transcription less than deletion of either motif, but increasing the spacing between the motifs by one helical turn of DNA preserves normal levels of transcription. We also show that the rat U3D DSE is functionally equivalent to the human U2 snRNA DSE, which consists of adjacent GC and octamer motifs, and that elements from the Herpes Simplex Virus thymidine kinase promoter can replace part or all of the U3D DSE. These data are apparently paradoxical; despite high evolutionary conservation, the U3 DSE is relatively insensitive to mutation, and other upstream motifs are also able to drive transcription from the U3 basal promoter. We suggest that the conserved structure of the U3 DSE may be required for regulation rather than efficiency of U3 transcription.