Hydrodynamical instability of melt flow in laser cutting

Abstract
A dynamic model of melt ejection by a gas jet in laser cutting is presented. The molten material is removed due to friction forces and the pressure gradient of the gas flow. The solution of the stationary equations yields the thickness of the molten layer and its velocity of flow, dependent on cutting speed, gas jet formation and the viscosities and densities of the melt and the gas. A stability analysis of the stationary flow shows instabilities for a pressure gradient controlled melt removal. It is argued that these instabilities correlate with ripple formation on the cutting surface.

This publication has 3 references indexed in Scilit: