Catalytic, Asymmetric Preparation of Ketene Dimers from Acid Chlorides

Abstract
The cinchona alkaloid-catalyzed dimerization of monosubstituted ketenes generated in situ from the reaction of acid chlorides and diisopropylethylamine yields ketene dimers in high yields and enantioselectivities. This reaction tolerates sterically demanding and functionally diverse substituents. Kinetic studies suggest that the rate-determining step for the reaction is the deprotonation of the acid chloride by the tertiary amine to form ketene and that the stereochemistry-forming step is addition of an ammonium enolate with ketene.