Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2

Top Cited Papers
Open Access
Abstract
Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome. Kallmann syndrome is a developmental disease that affects both the hormonal reproductive axis and the sense of smell. In addition, various nonreproductive and nonolfactory anomalies are occasionally observed in a fraction of the patients. There is a developmental link between the reproductive and olfactory disorders: neuroendocrine cells producing the gonadotropin-releasing hormone that is deficient in the patients normally migrate from the nose to the forebrain along olfactory nerve fibers during embryonic life, and they most probably fail to do so in the patients. Affected individuals usually do not undergo spontaneous puberty. Hormone replacement therapy is the treatment to initiate virilization in males or breast development in females, and later, to develop fertility in both sexes. This is a hereditary disease with complex genetic transmission. Mutations in either of two different genes, KAL1 and FGFR1, have been found in approximately 20% of the affected individuals. The authors report on the identification (in a further 10% of patients) of various mutations in the prokineticin receptor-2 or prokineticin-2 genes, encoding a cell surface receptor and one of its ligands, respectively. Notably, some of the mutations were also detected in clinically unaffected individuals. This clearly indicates that additional, still unknown genetic or non-genetic factors are involved in disease production.

This publication has 33 references indexed in Scilit: