Relationship between specific gravity, water content, and serum protein extravasation in various types of vasogenic brain edema

Abstract
Summary Vasogenic brain edema was induced in cats by cold injury (six animals), brain tumors (five animals), and brain abscesses (six animals). Water and electrolyte content, specific gravity, blood volume, and the amount of extravasated serum proteins were determined in small tissue samples taken from gray and white matter at various distances from the lesion. Edema was strictly confined to the white matter of the affected hemisphere and declined from the lesion to the more peripheral regions. It was characterized by the extravasation of serum proteins and an increase of water and sodium content with little or unpredictable changes of potassium and blood volume. The calculated sodium content of edema fluid varied between 129 and 135 μeq/ml, and serum protein content between 8.1 and 11.9 mg/ml. In all three types of edema, specific gravity and water content correlated closely with the same slope and intercept of the calculated regression (y=1.119–0.0011x,r=−0.91). The results obtained indicate that the main denominator of specific gravity of edematous white matter is water content and that this relationship is not significantly altered by variations of blood volume or serum protein content.