Epidermal Growth Factor Increases Intestinal Calbindin-D9kand 1,25-Dihydroxyvitamin D Receptors in Neonatal Rats*
- 1 July 1989
- journal article
- research article
- Published by The Endocrine Society in Endocrinology
- Vol. 125 (1) , 478-485
- https://doi.org/10.1210/endo-125-1-478
Abstract
Epidermal growth factor (EGF) has been reported to increase intestinal calcium absorption in suckling rats. The mechanism of this effect is unknown, as are the roles of vitamin D-dependent and independent pathways. The present studies were undertaken to investigate the ability of EGF to accelerate the postnatal induction of the vitamin D-dependent intestinal calcium-binding protein, calbindin-D9k. Subcutaneous administration of EGF increased duodenal calbindin-D9k in suckling rats by more than 100% (P < 0.001). The effect of EGF was not seen in older weaned animals or when EGF was given to suckling rats by gavage. Administration of EGF simulated the changes of normal development. (1) It increased calbindin-D9k, and the effect was greater in proximal than distal duodenum. (2) EGF increased alkaline phosphatase activity to the same extent in proximal and distal duodenum. (3) EGF increased sucrase more markedly in distal than in proximal epithelium. Maximal and half-maximal effects of EGF on each of these proteins were observed at twice daily doses of 0.1 and 0.04 .mu.g/g BW, respectively. (4) EGF at the maximally effective dose produced a small (30%) but statistically significant (P < 0.005) increase in serum 1,25-dihydroxyvitamin D. (5) Most importantly, EGF treatment resulted in a 2-fold increase in intestinal 1,25-dihydroxyvitamin D receptors (VDR) in the proximal segments of the small intestine (P < 0.001). EGF effects on calbindin-D9k and VDR were specific for the intestine, as EGF did not change kidney calbindin-D9k or kidney VDR. Thus, EGF was able to prematurely initiate a complex series of molecular changes that occur during normal development. The mechanism of EGF''s action to stimulate calcium absorption appears to involve a maturation effect on the vitamin D-dependent pathway.This publication has 6 references indexed in Scilit:
- Epidermal growth factor stimulates the rapid accumulation of inositol (1,4,5)-trisphosphate and a rise in cytosolic calcium mobilized from intracellular stores in A431 cells.Journal of Biological Chemistry, 1987
- A Physiological Role of Epidermal Growth Factor in Male Reproductive FunctionScience, 1986
- Developmental changes in the mechanisms of duodenal calcium transport in the ratAmerican Journal of Physiology-Gastrointestinal and Liver Physiology, 1983
- GLUCOCORTICOID REGULATION OF 1,25(OH)2VITAMIN D3RECEPTORS: DIVERGENT EFFECTS ON MOUSE AND RAT INTESTINEEndocrinology, 1982
- Intestinal Calcium-Binding Protein in the Developing Rat DuodenumPediatric Research, 1982
- Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D3 during neonatal development in the rat.Journal of Biological Chemistry, 1981