Foamability, Foam Stability, and Chemical Composition of Espresso Coffee As Affected by the Degree of Roast

Abstract
Two coffees of different botanical and geographical origins were used: Brazil coffee (dry-processed Arabica) and Uganda coffee (dry-processed robusta). The samples were roasted, and the foamability and foam stability of the espresso coffee were determined as a function of the degree of roast. Espresso coffees were characterized with regard to the amount of total solids, pH, fat, protein, and carbohydrate. The polymeric carbohydrates were precipitated with ethanol solutions (55 and 75% ethanol fractions), and the component monosaccharides were quantified by gas−liquid chromatography. A principal component analysis was applied to the chemical variables. This study showed that foamability of the espresso coffee increases with degree of roast and depends on the amount of protein in the infusion. Foamability as a function of the degree of roast does not differ significantly for the two coffees. Foam stability of espresso coffee as a function of degree of roast is related to the amount of galactomannan and arabinogalactan present and seems to be independent of the origin of the coffee despite the coffees having shown a different degree of roast for maximum foam stability. The degree of roast as a technological parameter does not allow an espresso coffee with maximum foamability and foam stability to be obtained at the same time. Keywords: Espresso coffee; degree of roast; foamability; foam stability; galactomannan; arabinogalactan; multivariate analysis; principal component analysis

This publication has 5 references indexed in Scilit: