Detection of Molecular Alignment in Confined Films

Abstract
Optical second harmonic generation was used to study the in-plane alignment of self-assembled silane monolayers attached to a glass surface under mechanical loading. The measurements allow correlation of the macroscopic forces acting on the monolayer with the average orientation and the azimuthal molecular alignment of the terminal molecular entity. Compression and shear forces lead to an alignment of the initially randomly oriented molecules on a macroscopic length scale. The change in azimuthal alignment of molecules under mechanical stress was found to be irreversible on the time scale of 12 hours, whereas changes of the molecular tilt angle were reversible.