Intermediate filaments, microtubules and microfilaments in epidermis of sea urchin tube foot

Abstract
Tube foot epidermal cells of the sea urchin Strongylocentrotus purpuratus were examined by transmission electron microscopy and fluorescence microscopy to identify the chemical nature of prominent bundles of cytoplasmic filaments. Cross sections revealed filaments of roughly 7–8 nm in diameter closely packed into dense bundles. These bundles, in turn, were each surrounded by a loose sheath of microtubules. The filament size and negative reaction with the fluorescent F-actin binding drug NBD-phallacidin indicated that they were not actin. Indirect immunofluorescence microscopy of whole tissues and frozen sections revealed a strong reaction of the filaments with a monoclonal antibody prepared against porcine stomach desmin. In SDS-polyacrylamide gels of whole tube foot protein, a band of apparent molecular weight around 50 000 daltons reacted with the anti-desmin monoclonal antibody. The combined data provide evidence that the epidermal filament bundles are related to vertebrate intermediate filaments, but further biochemical studies will be necessary to assign them to a particular class of filament proteins.