THE RELATION BETWEEN COOL CLUSTER CORES ANDHERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

Abstract
We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 μm), we calculate the obscured star formation rate (SFR). 22+6.2 –5.3% of the BCGs are detected in the far-infrared, with SFR = 1-150 M yr–1. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time 2 × 1011 L ), only a small (0.4 mag) reddening correction is required for SFR(Hα) to agree with SFRFIR. The relatively low Hα extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.
All Related Versions