Performance evaluation of a dual-energy X-ray bone densitometer
- 1 May 1989
- journal article
- research article
- Published by Springer Nature in Calcified Tissue International
- Vol. 44 (3) , 228-232
- https://doi.org/10.1007/bf02556569
Abstract
We tested a dual-energy bone densitometer (LUNAR DPX) that uses a stable x-ray generator and a K-edge filter to achieve the two energy levels. A conventional scintillation detector in pulse-counting mode was used together with a gain stabilizer. The densitometer normally performs spine and femur scans in about 6 minutes and 3 minutes, respectively, with adequate spatial resolution (1.2×1.2mm). Total body scans take either 10 minutes or 20 minutes. The long-term (6 months, n=195) precision of repeat measurement on an 18-cm thick spine phantom was 0.6% at the medium speed. Precision errorin vivo was about 0.6, 0.9 and 1.5% for spine scans (L2-L4) at slow, medium and fast speeds, while the error was 1.2 and 1.5 to 2.0%, respectively, for femur scans at slow and medium speed. The precision of total body bone density was 0.5%in vitro andin vivo. The response to increasing amounts of calcium hydroxyapatite was linear (r=0.99). The densitometer accurately indicated (within 1%) the actual amount of hydroxyapatite after correction for physiological amounts of marrow fat. The measured area corresponded exactly (within 0.5%) to that of known annuli and to the radiographic area of spine phantoms. There was no significant effect of tissue thickness on mass, area, or areal density (BMD) between 10 and 24cm of water. The BMD values for both spine and femurin vivo correlated highly (r=0.98, SEE=.03 g/cm2) with those obtained using conventional153Gd DPA. Similarly, total body BMD correlated highly (r=0.96, SEE=.02g/cm2) with DPA results.This publication has 10 references indexed in Scilit:
- Comparison of Dual-Energy X-Ray Absorptiometry and Dual Photon Absorptiometry for Bone Mineral Measurements of the Lumbar SpineMayo Clinic Proceedings, 1988
- Quantitative Digital RadiographyVersusDual Photon Absorptiometry of the Lumbar Spine*Journal of Clinical Endocrinology & Metabolism, 1988
- Dual energy radiography (DER): A preliminary comparative studyCalcified Tissue International, 1988
- Vertebral Mineral Determination by Quantitative Computed Tomography (QCT)Journal of Computer Assisted Tomography, 1988
- Vertebral Trabecular BoneJournal of Computer Assisted Tomography, 1987
- Systematic errors in bone‐mineral measurements by quantitative computed tomographyMedical Physics, 1987
- Influence of vertebral fat content on quantitative CT density.Radiology, 1986
- Evaluation of a prototype dual‐energy computed tomographic apparatus. II. Determination of vertebral bone mineral contentMedical Physics, 1986
- Dual-photon Gd-153 absorptiometry of bone.Radiology, 1985
- X ray spectrophotometry for bone-mineral determinationsMedical & Biological Engineering & Computing, 1974