The Response of the ECMWF Model to Changes in the Cloud Overlap Assumption

Abstract
The role of the cloud overlap assumption (COA) in organizing the cloud distribution through its impact on the vertical heating/cooling rate profile by radiative and precipitative/evaporative processes is studied in a series of experiments with a recent version of the ECMWF general circulation model, which includes a prognostic cloud scheme. First, the radiative forcing initially obtained for different COAs (maximum, MAX; maximum-random, MRN;and random, RAN overlap) is discussed from results of one-dimensional radiation-only computations. Ensembles of TL95 L31 simulations for the winter 1987/88 (November–December–January–February) are then used, with the three different overlap assumptions applied on radiation only (RAD), evaporation/precipitation only (EP), or both (EPR). In RAD and EPR simulations, the main effect of a change in COA is felt by the model through the change in radiative heating profile, which affects in turn most aspects of the energy and hydrological budget. However, the role of ... Abstract The role of the cloud overlap assumption (COA) in organizing the cloud distribution through its impact on the vertical heating/cooling rate profile by radiative and precipitative/evaporative processes is studied in a series of experiments with a recent version of the ECMWF general circulation model, which includes a prognostic cloud scheme. First, the radiative forcing initially obtained for different COAs (maximum, MAX; maximum-random, MRN;and random, RAN overlap) is discussed from results of one-dimensional radiation-only computations. Ensembles of TL95 L31 simulations for the winter 1987/88 (November–December–January–February) are then used, with the three different overlap assumptions applied on radiation only (RAD), evaporation/precipitation only (EP), or both (EPR). In RAD and EPR simulations, the main effect of a change in COA is felt by the model through the change in radiative heating profile, which affects in turn most aspects of the energy and hydrological budget. However, the role of ...

This publication has 0 references indexed in Scilit: