The energy-momentum method for the stability of non-holonomic systems
- 1 January 1998
- journal article
- research article
- Published by Taylor & Francis in Dynamics and Stability of Systems
- Vol. 13 (2) , 123-165
- https://doi.org/10.1080/02681119808806257
Abstract
In this paper, we analyze the stability of relative equilibria of non-holonomic systems (that is, mechanical systems with non-integrable constraints such as rolling constraints). In the absence of external dissipation, such systems conserve energy, but nonetheless can exhibit both neutrally stable and asymptotically stable, as well as linearly unstable relative equilibria. To carry out the stability analysis, we use a generalization of the energy-momentum method combined with the Lyapunov-Malkin theorem and the center manifold theorem. While this approach is consistent with the energy-momentum method for holonomic systems, it extends it in substantial ways. The theory is illustrated with several examples, including the rolling disk, the roller racer and the rattleback topKeywords
This publication has 36 references indexed in Scilit:
- The geometry of the Routh problemJournal of Nonlinear Science, 1995
- Nonholonomic reductionReports on Mathematical Physics, 1993
- Gyroscopic control and stabilizationJournal of Nonlinear Science, 1992
- Stability of relative equilibria. Part I: The reduced energy-momentum methodArchive for Rational Mechanics and Analysis, 1991
- The rigid body dynamics of unidirectional spinProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1986
- On the dynamics of a solid on an absolutely rough planeJournal of Applied Mathematics and Mechanics, 1983
- On permanent rotations of a heavy solid body on an absolutely rough horizontal planeJournal of Applied Mathematics and Mechanics, 1981
- Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaitsAnnales de l'institut Fourier, 1966
- Sur Ľintégration des équations du mouvement d’un corps pesant de révolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceauRendiconti del Circolo Matematico di Palermo Series 2, 1900
- Über gleitende und rollende BewegungMonatshefte für Mathematik, 1892