Abstract
In the eggs of the newt, Triturus pyrrhogaster, 2 separate factors are recognized which take part in cleavage furrow formation. (1) The inductive capacity for the furrow formation by the cytoplasm lying under the cortex along the cleavage furrow (FIC); and (2) the reactivity of the overlying cortex to form a furrow in response to FIC. (1) FIC. The inductive capacity is shown by the fact that FIC induces a furrow on which-ever part of the surface under which FIC is transplanted. FIC is distributed along the cleavage furrow and even extends along the future furrow plane ahead of the furrow tip. The distance FIC precedes the furrow tip is about 10 mm in the animal hemisphere and is less in the vegetal hemisphere. In the direction at right angles to the furrow plane, FIC does not spread more than 0·1 mm. FIC is also present in the eggs of Xenopus laevis. Species specificity of FIC for induction is not found between Triturus and Xenopus. (2) Surface layer. At the onset of the first cleavage, the reactivity of the cortex to form the furrow in answer to FIC induction is localized on the animal pole region. The reactivity of the cortex propagates medially as a belt along the surface towards the vegetal pole with the advancing tip of the cleavage furrow. After the furrow is completed, the reactivity begins to be lost from the animal pole region, and eventually over the entire surface. The reactivity, however, reappears on the animal pole region simultaneously with the second cleavage.