Abstract
Triphenylphosphane 1, its oxide 2 and sulfide 3 undergo one-electron reduction at a mercury cathode in DMF to yield the corresponding radical anions. ESE analysis of the paramagnetic species is facilitated by deuteration and suggests a pyramidal geometry of the radicals. Reduction with potassium metal in DME at low temperature yields also radical anions for 2 and 3. The phosphane 1, however, reacts under phenyl cleavage and potassiumphenyl-assisted ring closure to the dianion of 5H-dibenzophosphole 4. This radical 4· ⊖⊖ is also obtainod by alkali metal reduction of P-phenyldibenzophosphole o, and its spin distribution is compared to iso-.-π-electronic radicals containing CH, N, O, S, or Se links instead of the phosphorus atom.

This publication has 0 references indexed in Scilit: