Abstract
Linear programming techniques are utilized to determine the optimal filter weights for minimizing the peak range sidelobes of a binary phase-coded waveform. The resulting filter is compared with the filter obtained by use of the least square approximation to the ideal inverse filter. For a test case using the 13-element Barker code the linear programming filter is found to have peak sidelobes as much as 5 dB lower than the least squares filter of the same length.

This publication has 4 references indexed in Scilit: