Abstract
Double mutants of Escherichia coli dam (DNA adenine methyltransferase) strains with ruvA, ruvB, orruvC could not be constructed, whereas damderivatives with recD, recF, recJ, and recR were viable. The ruv gene products are required for Holliday junction translocation and resolution of recombination intermediates. A dam recG (Holliday junction translocation) mutant strain was isolated but at a very much lower frequency than expected. The inviability of a dam lexA(Ind) host was abrogated by the simultaneous presence of plasmids encoding both recA and ruvAB. This result indicates that of more than 20 SOS genes, only recAand ruvAB need to be derepressed to allow fordam mutant survival. The presence of mutS ormutL mutations allowed the construction of dam lexA (Ind) derivatives. The requirement forrecA, recB, recC, ruvA,ruvB, ruvC, and possibly recG gene expression indicates that recombination is essential for viability ofdam bacteria probably to repair DNA double-strand breaks. The effect of mutS and mutL mutations indicates that DNA mismatch repair is the ultimate source of most of these DNA breaks. The requirement for recombination also suggests an explanation for the sensitivity of dam cells to certain DNA-damaging agents.