A human homologue of Drosophila kelch associates with myosin‐VIIa in specialized adhesion junctions
- 15 March 2002
- journal article
- research article
- Published by Wiley in Cell Motility
- Vol. 51 (3) , 147-164
- https://doi.org/10.1002/cm.10025
Abstract
Mutations in myosin-VIIa are responsible for the deaf-blindness, Usher disease. Myosin-VIIa is also highly expressed in testis, where it is associated with specialized adhesion plaques termed ectoplasmic specializations (ES) that form between Sertoli cells and germ cells. To identify new roles for myosin-VIIa, we undertook a yeast two-hybrid screen to identify proteins associated with myosin-VIIa in the ES. We identified Keap1, a human homologue of the Drosophila ring canal protein, kelch. The kelch-repeats in the C-terminus of human Keap1 associate with the SH3 domain of myosin-VIIa. Immunolocalization studies revealed that Keap1 is present with myosin-VIIa in the actin bundles of the ES. Myosin-VIIa and Keap1 copurify with ES and colocate with each other and with F-actin at the electron microscopy level. Interestingly, in many epithelial cell types including cells derived from retina and inner ear, Keap1 is a component of focal adhesions and zipper junctions. Keap1 can target to the ES in the absence of myosin-VIIa, suggesting that Keap1 associates with other molecules in the adhesion plaque. Keap1 and myosin-VIIa overlapped in expression in the inner hair cells of the cochlea, suggesting that Keap1 may be a part of a family of actin-binding proteins that could be important for myosin-VIIa function in testis and inner ear. Cell Motil. Cytoskeleton 51:147–164, 2002.Keywords
This publication has 58 references indexed in Scilit:
- Myosin-VIIb, a Novel Unconventional Myosin, Is a Constituent of Microvilli in Transporting EpitheliaGenomics, 2001
- Functional Contacts between Sertoli Cells in Normal and Aspermatogenic Rat Seminiferous Epithelium Contain α6β1 Integrins, and their Formation is Controlled by Follicle-Stimulating Hormone1Biology of Reproduction, 1998
- Mutation analysis of the mouse myosin VIIA deafness geneGenes and Function, 1997
- Mutations in the myosin VIIA gene cause non-syndromic recessive deafnessNature Genetics, 1997
- Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expressionCell Motility, 1997
- Molecular Cloning and Domain Structure of Human Myosin-VIIa, the Gene Product Defective in Usher Syndrome 1BGenomics, 1996
- Defective myosin VIIA gene responsible for Usher syndrome type IBNature, 1995
- Drosophila kelch motif is derived from a common enzyme foldJournal of Molecular Biology, 1994
- Immunofluorescence localization of vinculin in ectoplasmic (“junctional”) specializations of rat sertoli cellsJournal of Anatomy, 1990
- A novel genetic system to detect protein–protein interactionsNature, 1989