Optical properties of anisotropic exciton: Hyperspherical theory

Abstract
A perturbation Brillouin-Wigner approach to anisotropic exciton problem, based on a hyperspherical formalism, is developed. The binding energies and oscillator strengths of elongated as well as flattened excitons are calculated numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributing between optically active and formerly inactive states, making the latter optically active.