Molecular Basis for P-Site Inhibition of Adenylyl Cyclase,
- 1 November 2000
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 39 (47) , 14464-14471
- https://doi.org/10.1021/bi0015562
Abstract
P-site inhibitors are adenosine and adenine nucleotide analogues that inhibit adenylyl cyclase, the effector enzyme that catalyzes the synthesis of cyclic AMP from ATP. Some of these inhibitors may represent physiological regulators of adenylyl cyclase, and the most potent may ultimately serve as useful therapeutic agents. Described here are crystal structures of the catalytic core of adenylyl cyclase complexed with two such P-site inhibitors, 2‘-deoxyadenosine 3‘-monophosphate (2‘-d-3‘-AMP) and 2‘,5‘-dideoxyadenosine 3‘-triphosphate (2‘,5‘-dd-3‘-ATP). Both inhibitors bind in the active site yet exhibit non- or uncompetitive patterns of inhibition. While most P-site inhibitors require pyrophosphate (PPi) as a coinhibitor, 2‘,5‘-dd-3‘-ATP is a potent inhibitor by itself. The crystal structure reveals that this inhibitor exhibits two binding modes: one with the nucleoside moiety bound to the nucleoside binding pocket of the enzyme and the other with the β and γ phosphates bound to the pyrophosphate site of the 2‘-d-3‘-AMP·PPi complex. A single metal binding site is observed in the complex with 2‘-d-3‘-AMP, whereas two are observed in the complex with 2‘,5‘-dd-3‘-ATP. Even though P-site inhibitors are typically 10 times more potent in the presence of Mn2+, the electron density maps reveal no inherent preference of either metal site for Mn2+ over Mg2+. 2‘,5‘-dd-3‘-ATP binds to the catalytic core of adenylyl cyclase with a Kd of 2.4 μM in the presence of Mg2+ and 0.2 μM in the presence of Mn2+. Pyrophosphate does not compete with 2‘,5‘-dd-3‘-ATP and enhances inhibition.Keywords
This publication has 9 references indexed in Scilit:
- Covalent Labeling of Adenylyl Cyclase Cytosolic Domains with γ-Methylimidazole-2′,5′-dideoxy-[γ-32P]3′-ATP and the Mechanism for P-site-mediated InhibitionJournal of Biological Chemistry, 1999
- Adenine Nucleoside 3′-Tetraphosphates Are Novel and Potent Inhibitors of Adenylyl CyclasesPublished by Elsevier ,1998
- Crystallography & NMR System: A New Software Suite for Macromolecular Structure DeterminationActa Crystallographica Section D-Biological Crystallography, 1998
- Exchange of Substrate and Inhibitor Specificities between Adenylyl and Guanylyl CyclasesJournal of Biological Chemistry, 1998
- Interaction of Gsα with the Cytosolic Domains of Mammalian Adenylyl CyclaseJournal of Biological Chemistry, 1997
- Structure of trypanothione reductase from Crithidia fasciculata at 2.6 Å resolution; enzyme–NADP interactions at 2.8 Å resolutionActa Crystallographica Section D-Biological Crystallography, 1994
- Crystal Structure of 2′-O-Succinyladenosine 3′,5′-(Cyclic)phosphate Monohydrate: A Model Compound to Study Protein–Nucleic Acid InteractionsBulletin of the Chemical Society of Japan, 1991
- Crystal and molecular structure of cyclic adenosine 3',5'-monophosphate sodium salt, monoclinic formJournal of the American Chemical Society, 1982
- 8-[(2-Aminoethyl)amino]adenosine cyclic 3',5'-monophosphate tetrahydrateActa Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1978