Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes

Abstract
Scanning tunneling microscope spectroscopy is used to study in detail the electronic band structure of carbon nanotubes as well as to locally investigate electronic features of interesting topological sites such as nanotube ends and bends. From a large number of measurements of the tunneling density-of-states (DOS) nanotubes can be classified, according to predictions, as either semiconducting (two-third of the total number of tubes) or metallic (one-third). The energy subband separations in the tunneling DOS compare reasonably well to theoretical calculations. At nanotube ends, spatially resolved spectra show additional sharp conductance peaks that shift in energy as a function of position. Spectroscopy measurements on a nanotube kink suggest that the kink is a heterojunction between a semiconducting and a metallic nanotube.

This publication has 38 references indexed in Scilit: