Air–Sea Interaction over the Eastern Pacific Warm Pool: Gap Winds, Thermocline Dome, and Atmospheric Convection*

Abstract
High-resolution satellite observations are used to investigate air–sea interaction over the eastern Pacific warm pool. In winter, strong wind jets develop over the Gulfs of Tehuantepec, Papagayo, and Panama, accelerated by the pressure gradients between the Atlantic and Pacific across narrow passes of Central American cordillera. Patches of cold sea surface temperatures (SSTs) and high chlorophyll develop under these wind jets as a result of increased turbulent heat flux from the ocean and enhanced mixing across the base of the ocean mixed layer. Despite a large decrease in SST (exceeding 3°C in seasonal means), the cold patches associated with the Tehuantepec and Papagayo jets do not have an obvious effect on local atmospheric convection in winter since the intertropical convergence zone (ITCZ) is located farther south. The cold patch of the Panama jet to the south, on the other hand, cuts through the winter ITCZ and breaks it into two parts. A pronounced thermocline dome develops west of the Gu... Abstract High-resolution satellite observations are used to investigate air–sea interaction over the eastern Pacific warm pool. In winter, strong wind jets develop over the Gulfs of Tehuantepec, Papagayo, and Panama, accelerated by the pressure gradients between the Atlantic and Pacific across narrow passes of Central American cordillera. Patches of cold sea surface temperatures (SSTs) and high chlorophyll develop under these wind jets as a result of increased turbulent heat flux from the ocean and enhanced mixing across the base of the ocean mixed layer. Despite a large decrease in SST (exceeding 3°C in seasonal means), the cold patches associated with the Tehuantepec and Papagayo jets do not have an obvious effect on local atmospheric convection in winter since the intertropical convergence zone (ITCZ) is located farther south. The cold patch of the Panama jet to the south, on the other hand, cuts through the winter ITCZ and breaks it into two parts. A pronounced thermocline dome develops west of the Gu...